

Andes RISC-V Processor IP Solutions

2 All

Charlie Su, Ph.D. CTO and EVP Andes Technology 2021/01/28

Andes Technology Corporation

Who We Are

Examples of AndesCore™ in SoC

Renesas: ASSP MCU with configurable V5 cores

- Scalable/configurable performance
- Selectable safety features
- Customization optionsFeature-rich AndeSight IDE

IAR

Telink: IoT and Wireless Audio with D25F embedded

- Strong integer/DSP performance
- Efficient small data processing
- Good development tools

Picocom: 5G Open RAN small cells

AI Accelerators for Servers with >10 NX27V Cores

- RVV with 512-bit VLEN/SIMD
- Custom instructions
- LLVM compiler

SYSTEMS Taking RISC-V[®] Mainstream

Andes V5 Processor Lineup

Application Processing	AX25MP		AX45MP
with Multicore & SMP Linux	A25MP		A45MP
Application Processing	AX25	AX27/AX27L2	AX45
with Single-core & Linux	A25	A27/A27L2	A45
Data Processing with DSP or Vector	D25F	NX27V	D45
Embedded Control	NX25F		NX45
with Integrated FPU	N25F		N45
N22	<u>25-Series:</u>	<u>27-Series:</u>	<u>45-Series:</u>
2-stage (700 MHz)	Fast & Compact	MemBoost	Superscalar
	5-stage: 1.1 GHz		8-stage: 1.2 GHz

Notes: 1. Core naming: with "X" is 64-bit (e.g. NX25F) and no "X" is 32-bit (e.g. N25F)

2. V5's common features include RV-IMACN, Caches, LM, ECC/parity, Branch Prediction, CoDense[™], PowerBrake, StackSafe[™], **ACE (Andes Custom Extension[™])**; Frequencies is the worst case at 28nm.

Taking RISC-V® Mainstream

A27L2/AX27L2 Overview

- A27/AX27 + L2\$ controller
- AndeStar[™] V5 base for "A" cores
 - RV*GCN + P
 - MMU support
 - Andes V5 extensions
- 5-stage single-issue cores
- Programmable PMP/PMA
- MemBoost for L1 caches
 - Skip unnecessary writes to dcache
 - Multiple outstanding data accesses
 - I/D cache prefetch

A27L2/AX27L2: L2\$ Controller

Features:

- Size up to 2MB with 64B lines
- 16-way, pseudo-random replacement
- 2 tag&data banks with bank interleaving
 - Programmable SRAM latencies (setup & delay)
- Prefetching based on access types (I or D)
- 128-bit AXI master/slave ports through BIU
- Optional ECC error protection

Performance with 512KB L2 cache:

- → Comparing AX27L2 and AX27
- Memory bandwidth: 2.1x
- Memory latency: 30%
- Specint2k: 1.9x

45-Series: Features

- AndeStar[™] V5 architecture:
 - Base: RV*GCN + Andes V5 extensions
 - N45/NX45: base
 - D45: base + P
 - A45/AX45: base + P + MMU
 - **A45MP/AX45MP**: base + P + MMU
- 8-stage in-order dual-issue
 - Independent pairs with 1 or 2 ALU insns
 - Most dependent pairs with 2 ALU insns
 - Late ALU for 0-cycle load-use penalty
- Unaligned data accesses
- Low power dynamic branch prediction
- MemBoost memory subsystem

45-Series: Features

Virtual memory support:

- MMU and S-mode
- All page sizes and virtual memory mappings (SV32/39/48)
- Shared TLB: 32-512 entries

Physical memory support:

• Up to 16-entry PMP and PMA

L1 I/D Caches:

- Size up to 64KB, 64B lines, up to 4-way
- Cache lock support
- Optional Parity or ECC error protection

I/D Local Memory (ILM/DLM)

- 4KB up to 16MB
- Optional ECC error protection

A(X)45MP: Cache-Coherent Multicore

Cache coherence scheme

- Directory-based for scalability
- MESI coherence protocol

45MP Coherence Manager

- Support 1~4 A45/AX45
- IO coherence for cacheless masters
- L2\$ Controller (optional)
 Similar to that of A*27L2

Bus Interfaces

- Memory and MMIO ports
- LM slave ports (one per core)
- Coherence slave port
- PLIC for global interrupt handling
- Debug/trace support
 Linux SMP ready

45-Series: Performance

Total compute performance (at 28nm):

Coremark®	45-series (1.2 GHz)	27-series (1.1 GHz)	Speedup (Per-MHz)	Speedup (Total Perf.)
RV32	5.66	3.58	1.58	1.72
RV64	5.50	3.53	1.56	1.70

- 70% higher than the 27-series
- With less than 50% increase in logic area and power
- Memory bandwidth (C copy): 45-series is 35% higher than 27-series
- Running up to 2.4 GHz at 12nm

Taking RISC-V[®] Mainstream

Andes Solutions for Data Path Acceleration

- RVV extension (Vector)
 - Scalable vector registers
 - For high data rate computations
- Andes Custom Extension[™] (ACE)

- RVP extension (DSP/SIMD)
 - Integer/fixed-point on already existing GPR
 - For audio/voice, small image, slow video

ISS:

- AndeSim near-cycle accurate simulator
 Imperas fast simulator
- Imperas fast simulator

NX27V: Overview

- AndeStar V5 architecture:
 - RV64GCN+ Andes V5 extensions
 - Vector ext. (RVV) 1.0: latest spec
- An efficient 5-stage scalar unit
 - Optional branch prediction
 - FP16 instructions
- I/D caches
 - Caches: 8KB to 64KB
 - HW unaligned load/store accesses
 - Optional parity or ECC protection
 - I\$/D\$ prefetch
 - Multiple outstanding data accesses
 - Cached and uncached

NX27V: Overview

RVV data formats:

- Standard: int8~int64, fp16~fp64
- Andes-extended: bfloat16 and int4
- A powerful Vector Unit (VPU):
 - RVV starts execution after retired
 - Multiple Functional Units
 - Operating in parallel and out of order
 - Chainable, and most fully pipelined
 - VLEN & SIMD width: 128, 256, 512
- Independent memory access paths:
 - RVV load/store thru dcache and system bus
 - ACE load/store thru Streaming Port

Taking RISC-V® Mainstream

NRISC

NX27V: ACE Streaming Port

insn svload {
 operand= {out vr data,
 io addrCtl addr,
 imm2 mode,
 ...
 };
 csr_op= {vl};
 streaming_port= load;

- A usage example
 - HW engine: application-specific DMA and structured computations (e.g. CNN)
 - ACE instructions: control HW engine, and load/store data to/from VRF

- Advantages:
 - HW engine is tightly-coupled

 $csim = \ldots$

. . .

• Data accesses are more efficient (such as address auto-increment and wrap-around)

Taking RISC-V® Mainstream

ACE for Custom Vector Instructions

- RVV is very powerful, but it cannot satisfy everyone.
- ACE makes custom vector instruction possible: rvv insn dotp {

operands= {out vrf rslt, in vrf vec1, in xrf vec2};
input_format= ...; // (quad) widening/narrowing
csim= ... //Instruction semantics in C
//RTL implementation in concise Verilog

- Designers only need to focus on ELEN-level instruction semantics
 COPILOT auto-generates supports for:
 - SW: compiler, debugger, simulator
 - RTL: decoding, formatting, dependence checking, chaining, and more
 - → RVV control-aware (LMUL, SEW, vl)

Scalable Acceleration Architecture

Multi-cluster architecture

Separate control from acceleration to optimize them independently
 Programming support: OpenCL

- Popular for heterogeneous multicore architecture with host and devices
- Support RVV intrinsic programming in addition to auto-vectorization

AndeSentry™ Security Framework

- An open framework for a wide spectrum of threat mitigations
 - From cyber attacks to physical attacks
 - Flexible, scalable, and trustable
 - Solutions from Andes and partners
- Scope:
 - TEE, crypto acceleration, protection against cyber attacks, countermeasures for physical attacks
 - Hardware and software

Taking RISC-V® Mainstream

NRISC

Thank You !!

PRISC L

