

AndesCore™ NRISC-V®

AndesCore™ is a series of high performance CPU core families geared to diverse market segments of today's emerging embedded applications. The versatile and rich features of the AndesCore™ families allow flexible SoC customizations based on the application needs in a design to improve platform performance and reduce system cost. In addition, the processors various employ commonly-used low power design techniques to save energy and further allow smart SoC level power management for better energy/performance outcome.

*Availability of the above function blocks varies on each core

AndesCore™: Performance, Power and Area

V5 Processors ₹RISC•V	Pipeline Stage	Best DMIPS (/MHz)%	Best CoreMark (/MHz)	Max Freq. *	Power *	Gate Count * (K)
N22 Ultra compact RISC-V core	2	1.80	3.95	700 MHz	2.42	15.8
N25F 32-bit Compact, High Performance	5	1.98	3.57	≥1.1 GHz	17	127
N25F-SE 32-bit Automotive, Compact , MCU	5	1.91	3.57	≥900 MHz	21	158
NX25F 64-bit Compact, High Performance	5	2.14	3.55	≥1.1 GHz	18	172
D25F 32-bit High Performance with DSP	5	1.98	3.57	≥1.1 GHz	17	186
A25 32-bit High Performance, Linux	5	1.98	3.57	≥1.1 GHz	17	144
AX25 64-bit High Performance, Linux	5	2.14	3.55	≥1.1 GHz	20	193
A25MP 32-bit Multicore, Linux SMP	5	1.98	3.57	≥1.1 GHz	#	880
AX25MP 64-bit Multicore, Linux SMP	5	2.14	3.55	≥1.1 GHz	#	1076
A27 32-bit with MemBoost, Linux	5	1.98	3.57	≥1.1 GHz	21	223
AX27 64-bit with MemBoost, Linux	5	2.14	3.55	≥1.1 GHz	23	273
A27L2 32-bit with MemBoost/L2, Linux	5	1.98	3.57	≥1.1 GHz	27	427
AX27L2 64-bit with MemBoost/L2, Linux	5	2.14	3.55	≥1.1 GHz	30	477
NX27V 64-bit with Vector Extension	5	2.14	3.55	1.2 GHz	#	#
N45 32-bit Superscalar	8	2.86	5.67	≥1.6 GHz	12.1	275
NX45 64-bit Superscalar	8	3.27	5.63	≥1.6 GHz	14.2	357
D45 32-bit Superscalar with DSP	8	2.86	5.67	≥1.6 GHz	12.1	337
A45 32-bit Superscalar Application Processor, Linux	8	2.86	5.67	≥1.6 GHz	13.5	412
AX45 64-bit Superscalar Application Processor, Linux	8	3.27	5.63	≥1.6 GHz	16.3	517
A45MP 32-bit Superscalar Application Processor, Linux	8	2.86	5.67	≥1.6 GHz	14.3	489
AX45MP 64-bit Superscalar Application Processor, Linux	8	3.27	5.63	≥1.6 GHz	16.8	632

[%] no-inline ground rules

^{* 25/27} and 22 series are at 28nm. N22 configured with minimum useful configuration (small multiplier, static branch prediction). N(X)25F and D25F configured with 256-entry BTB, 16-entry PMP and 32KB L1 I/D cache, without FPU; A(X)25, A(X)25MP, A(X)27/L2 in addition with 128-entry TLB, without DSP; A(X)25MP configured with 4 cores, A(X)25MP and A(X)27L2 with 256KB L2 cache. Synthesis with 28nm process slow silicon, 0.9Vdd, 125°C with I/O constraint. Power reported at typical process corner, Vdd, 25°C. Power and gate count are core only at 1GHz. NX27V configured with VLEN=512bit and 512-bit AXI bus. Synthesis with 7nm process, 0.675v/0°C with I/O constraint, Dhrystone program.

N(X)45 and D45 configured with 256-entry BTB, 16-entry PMP and PMA, and 32KB L1 I/D cache, without FPU; A(X)45/A(X)45MP in addition with 128-entry TLB. All 45-series (except A(X)45MP) data does not include FPU; A(X)45MP do not include L2 cache controller. Synthesis with 7nm FIN FET ULVT/LVT/SVT, frequency @ SSGNP 0.675v/-40°C with I/O constraint. Power reported at typical process corner, 0.75V, +85°C running Dhrystone benchmark. Power and gate count are core only @ Data are subject to change without notice. A(X)45MP power/area are for single core only.

[#] Contact Andes for details.

AndeSight™

Software Developer's Environment

General Description

AndeSight™ is an Eclipse-based integrated development environment (IDE) which provides an efficient way to develop embedded applications for AndesCore™ based SoCs.

Features

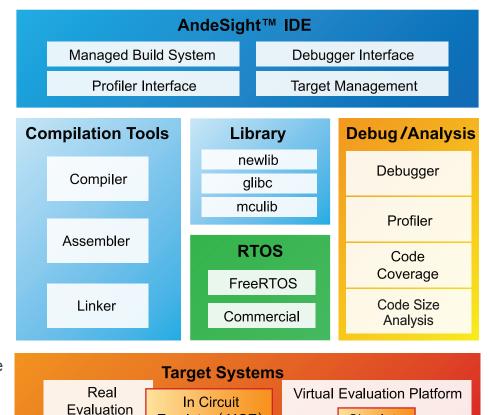
AndeSight™

- Eclipse-based IDE
- Project management
- Managed build system
- Feature-rich editor
- Source level debugger
- Profiling analysis
- In-System programming
- RTOS awareness debugging
- Break and display on exceptions
- Register Bitfield viewing and update
- Multicore development support
- Custom UI
- AndeStar[™] V5 CPU support
- Extensive demo projects
- Flexible license control
- Corvette F1 (Arduino-Compatible board) support

Toolchains

- Compiler for ELF and Linux targets
- Andes efficient ROM patch solution
- Highly optimized DSP library functions
- Highly optimized libc functions

Simulator


- CPU simulator(near-cycle accurate)
- Models of AndeShape[™] SoC platform

ICE

■ AICE debugger (4-wire/2-wire) with OpenOCD support

Supported Host Platforms

- Windows 7 / Windows 10
- Ubuntu Linux 18.04 / CentOS 7.0/ Red Hat Linux 7.0

AndeSight™ Versions:

Emulator (AICE)

STD

Platform

A comprehensive IDE with highly-optimized compilers, all GUI features, and Linux support.

Simulator

RDS

Based on AndeSight[™] with additional customization features for customers' redistribution.

AndeStar™ Architecture

The AndeStar™ V5, the latest generation of Andes architecture, consists of both 32-bit and 64-bit register architectures with mixed-length 16/32-bit instructions. It adopts the RISC-V technology as its subset and benefits from the fast growing RISC-V ecosystem. Together with the merits of performance enhancement extensions ingerited from V3, the third generation RISC-style architecture, the AndeStar™ V5 brings compact, modular and customizable advantages to SoC applications. As a founding Premier member of the RISC-V International Association, Andes is determined to take RISC-V to the mainstream.

AndeSoft™

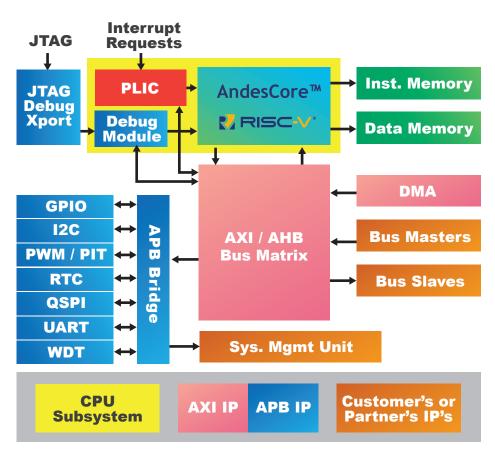
Building Blocks for System - AndeSoft™ Software Components

With AndeSight™ IDE, users can develop software with hardware in a seamlessly integrated environment efficiently. To speed up the development process, Andes further provides a rich set of software components, from Real-Time Operating System, Linux kernel and drivers, libraries, and middleware, to application frameworks, running on AndesCore™ processors under the name AndeSoft™. Users can leverage those well-prepared and verified building blocks based on their needs and focus on tackling products to greatly improve time-to-market.

Fundamental

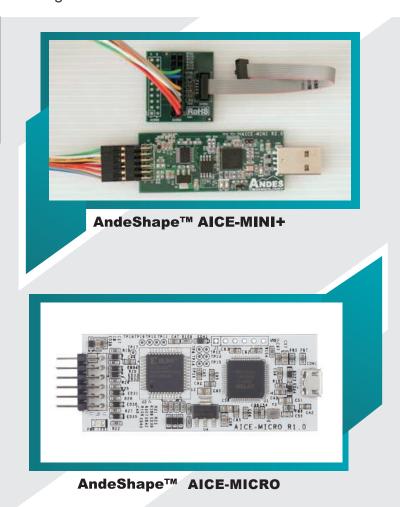
- Compiler and toolchain are contributed to and supported officially by GNU and LLVM communities
- Optimized C libraries: MCUlib, newlib and glibc
- Optimized low-level compute libraries for NN, DSP and vector processing: libnn, libdsp, libvec
- Concise linker script and its tools, Linker Scattering-and-Gathering (LdSaG)
- Bare-metal drivers and demo programs to demo AndesCore™ features
- Virtual platforms: **AndeSim™** (near cycle-accurate), **AndeSysC™** (SystemC library), **Qemu**

Real-Time Operating System


Commercial port on Andes: Azure RTOS ThreadX, RT-Thread, SylixOS

Linux, Middleware and SW Framework

- Linux kernel since 4.17 and LTS v5.4, device drivers and advanced features: strace, ftrace, Perf, SMU, power throttling, suspend-to-RAM and kernel module
- U-Boot, OpenSBI and BBL
- Andes6: connect LPWAN to IPv6 seamlessly


AndeShape™

The AndeShape™ development platform includes variety of hardware entitles, such as pre-platform IPs, ICE debuggers (AICE), and hardware evaluation boards for AndesCore™ processor based system development. To satisfy the best quality-of-result (QoR) requirements for different system applications, various platform IPs are available with different bus and datapath structures. In addition to a basic set of connectivity and storage devices, the rich set of hardware options in both board and SoC levels enable versatile flexibility in hardware/software co-development and early prototyping.

- * Platform is pre-integrated with CPU
- * Availability of platforms varies on each core

The comprehensive debugging support, including in-system programming, self-diagnosis, and embedded ICE, greatly reduces the system development cycle while maintaining the quality of design.

About Andes Technology

Andes Technology, a Founding Premier member of RISC-V International and publicly listed CPU IP provider (TWSE: 6533; SIN: US03420C2089; ISIN: US03420C1099), has been devoting to the development of innovative high-performance/low-power 32/64-bit processors and associated SoC platforms since its foundation in 2005. Its powerful CPU lineup covering entry-level, mid-range, high-end, extensible and security families has achieved design wins in numerous embedded applications across the world, making a cumulative record of over 10 billion SoC shipment containing Andes IP as of 2021. Andes is the first mainstream CPU vendor adopting the open RISC-V. While delivering advanced features based on proprietary ISAs, Andes also provides customized CPU service. For more information about Andes' products, technologies and services, please visit www.andestech.com or contact us through the following.

• **Headquarters**

10F., No. 1, Sec. 3, Gongdao 5th Rd., East Dist., Hsinchu City, Taiwan R.O.C 30069 Tel:+886-3-5726533 Fax:+886-3-5726535

Business:sales@andestech.com

Custom Computing:ccbu_sales@andestech.com

Q USA

2860 Zanker RD, Suite 104, San Jose CA 95134 Tel:1-408-809-2929 Business: america@andestech.com Technical: support.usa@andestech.com

Korea

Business: sales.korea@andestech.com Technical: support.korea@andestech.com

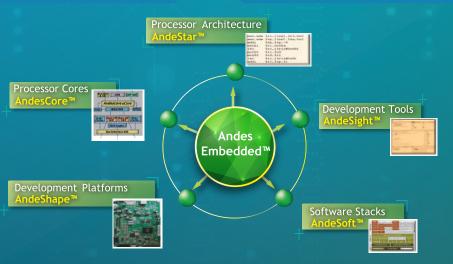
Japan

Business: sales.japan@andestech.com Technical: support.japan@andestech.com

Shanghai

Tel:+86-21-50310722 Mobile:+86-136-8186-2493 Room 303A, No. 500, Bibo Rd, Pudong District, Shanghai, China Business:sales.sh@andestech.com technical:support.sh@andestech.com

Shenzhen


Mobile:+86-135-1031-3727 Business:sales.sz@andestech.com Technical:support.sz@andestech.com

Beijing

Mobile: +86-135-1031-3727, +86-131-2120-6255 Business: sales.bj@andestech.com Technical: support.bj@andestech.com

Europe

Business: europe@andestech.com Technical: support.europe@andestech.com

