AndesCore™ is a series of high performance CPU core families geared to diverse market segments of today’s emerging embedded applications. The versatile and rich features of the AndesCore™ families allow flexible SoC customizations based on the application needs in a design to improve platform performance and reduce system cost. In addition, the processors employ various commonly-used low power design techniques to save energy and further allow smart SoC level power management for better energy/performance outcome.

AndesCore™ : Performance, Power and Area

<table>
<thead>
<tr>
<th>V5 Processors</th>
<th>Pipeline Stage</th>
<th>Best DMIPS (MHz)*</th>
<th>Best CoreMark (MHz)</th>
<th>Max Freq. *</th>
<th>Power *</th>
<th>Gate Count *</th>
</tr>
</thead>
<tbody>
<tr>
<td>N22 Ultra compact RISC-V core</td>
<td>2</td>
<td>1.80</td>
<td>3.95</td>
<td>≥1.1 GHz</td>
<td>2.42</td>
<td>15.8</td>
</tr>
<tr>
<td>N25F 32-bit Compact, High Performance</td>
<td>5</td>
<td>1.98</td>
<td>3.57</td>
<td>≥1.1 GHz</td>
<td>17</td>
<td>127</td>
</tr>
<tr>
<td>N25F-SE 32-bit Automotive, Compact, MCU</td>
<td>5</td>
<td>1.91</td>
<td>3.57</td>
<td>≥2.1 GHz</td>
<td>21</td>
<td>158</td>
</tr>
<tr>
<td>NX25F 64-bit Compact, High Performance</td>
<td>5</td>
<td>2.14</td>
<td>3.55</td>
<td>≥2.1 GHz</td>
<td>18</td>
<td>172</td>
</tr>
<tr>
<td>D25F 32-bit High Performance with DSP</td>
<td>5</td>
<td>1.98</td>
<td>3.57</td>
<td>≥1.1 GHz</td>
<td>17</td>
<td>186</td>
</tr>
<tr>
<td>A25 32-bit High Performance, Linux</td>
<td>5</td>
<td>1.98</td>
<td>3.57</td>
<td>≥1.1 GHz</td>
<td>17</td>
<td>144</td>
</tr>
<tr>
<td>AX25 64-bit High Performance, Linux</td>
<td>5</td>
<td>2.14</td>
<td>3.55</td>
<td>≥1.1 GHz</td>
<td>20</td>
<td>193</td>
</tr>
<tr>
<td>AX25MP 32-bit Multicore, Linux SMP</td>
<td>5</td>
<td>1.98</td>
<td>3.57</td>
<td>≥1.1 GHz</td>
<td>#</td>
<td>880</td>
</tr>
<tr>
<td>AX25MP 64-bit Multicore, Linux SMP</td>
<td>5</td>
<td>2.14</td>
<td>3.55</td>
<td>≥1.1 GHz</td>
<td>#</td>
<td>1076</td>
</tr>
<tr>
<td>A27 32-bit with MemBoost, Linux</td>
<td>5</td>
<td>1.98</td>
<td>3.57</td>
<td>≥1.1 GHz</td>
<td>21</td>
<td>223</td>
</tr>
<tr>
<td>AX27 64-bit with MemBoost, Linux</td>
<td>5</td>
<td>2.14</td>
<td>3.55</td>
<td>≥1.1 GHz</td>
<td>23</td>
<td>273</td>
</tr>
<tr>
<td>AX27L2 32-bit with MemBoost/L2, Linux</td>
<td>5</td>
<td>1.98</td>
<td>3.57</td>
<td>≥1.1 GHz</td>
<td>27</td>
<td>427</td>
</tr>
<tr>
<td>AX27L2 64-bit with MemBoost/L2, Linux</td>
<td>5</td>
<td>2.14</td>
<td>3.55</td>
<td>≥1.1 GHz</td>
<td>30</td>
<td>477</td>
</tr>
<tr>
<td>NX27V 64-bit with Vector Extension</td>
<td>5</td>
<td>2.14</td>
<td>3.55</td>
<td>≥1.2 GHz</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>N45 32-bit Superscalar</td>
<td>8</td>
<td>2.86</td>
<td>5.67</td>
<td>≥1.6 GHz</td>
<td>12.1</td>
<td>275</td>
</tr>
<tr>
<td>NX45 64-bit Superscalar</td>
<td>8</td>
<td>3.27</td>
<td>5.63</td>
<td>≥1.6 GHz</td>
<td>14.2</td>
<td>357</td>
</tr>
<tr>
<td>D45 32-bit Superscalar with DSP</td>
<td>8</td>
<td>2.86</td>
<td>5.67</td>
<td>≥1.6 GHz</td>
<td>12.1</td>
<td>337</td>
</tr>
<tr>
<td>A45 32-bit Superscalar Application Processor, Linux</td>
<td>8</td>
<td>2.86</td>
<td>5.67</td>
<td>≥1.6 GHz</td>
<td>13.5</td>
<td>412</td>
</tr>
<tr>
<td>AX45 64-bit Superscalar Application Processor, Linux</td>
<td>8</td>
<td>3.27</td>
<td>5.63</td>
<td>≥1.6 GHz</td>
<td>16.3</td>
<td>517</td>
</tr>
<tr>
<td>A45MP 32-bit Superscalar Application Processor, Linux</td>
<td>8</td>
<td>2.86</td>
<td>5.67</td>
<td>≥1.6 GHz</td>
<td>14.3</td>
<td>489</td>
</tr>
<tr>
<td>AX45MP 64-bit Superscalar Application Processor, Linux</td>
<td>8</td>
<td>3.27</td>
<td>5.63</td>
<td>≥1.6 GHz</td>
<td>16.8</td>
<td>632</td>
</tr>
</tbody>
</table>

* Availability of the above function blocks varies on each core

AndesCore™ is a series of high performance CPU core families geared to diverse market segments of today’s emerging embedded applications. The versatile and rich features of the AndesCore™ families allow flexible SoC customizations based on the application needs in a design to improve platform performance and reduce system cost. In addition, the processors employ various commonly-used low power design techniques to save energy and further allow smart SoC level power management for better energy/performance outcome.

AndesCore™ : Performance, Power and Area

<table>
<thead>
<tr>
<th>V5 Processors</th>
<th>Pipeline Stage</th>
<th>Best DMIPS (MHz)*</th>
<th>Best CoreMark (MHz)</th>
<th>Max Freq. *</th>
<th>Power *</th>
<th>Gate Count *</th>
</tr>
</thead>
<tbody>
<tr>
<td>N22 Ultra compact RISC-V core</td>
<td>2</td>
<td>1.80</td>
<td>3.95</td>
<td>≥1.1 GHz</td>
<td>2.42</td>
<td>15.8</td>
</tr>
<tr>
<td>N25F 32-bit Compact, High Performance</td>
<td>5</td>
<td>1.98</td>
<td>3.57</td>
<td>≥1.1 GHz</td>
<td>17</td>
<td>127</td>
</tr>
<tr>
<td>N25F-SE 32-bit Automotive, Compact, MCU</td>
<td>5</td>
<td>1.91</td>
<td>3.57</td>
<td>≥2.1 GHz</td>
<td>21</td>
<td>158</td>
</tr>
<tr>
<td>NX25F 64-bit Compact, High Performance</td>
<td>5</td>
<td>2.14</td>
<td>3.55</td>
<td>≥2.1 GHz</td>
<td>18</td>
<td>172</td>
</tr>
<tr>
<td>D25F 32-bit High Performance with DSP</td>
<td>5</td>
<td>1.98</td>
<td>3.57</td>
<td>≥1.1 GHz</td>
<td>17</td>
<td>186</td>
</tr>
<tr>
<td>A25 32-bit High Performance, Linux</td>
<td>5</td>
<td>1.98</td>
<td>3.57</td>
<td>≥1.1 GHz</td>
<td>17</td>
<td>144</td>
</tr>
<tr>
<td>AX25 64-bit High Performance, Linux</td>
<td>5</td>
<td>2.14</td>
<td>3.55</td>
<td>≥1.1 GHz</td>
<td>20</td>
<td>193</td>
</tr>
<tr>
<td>AX25MP 32-bit Multicore, Linux SMP</td>
<td>5</td>
<td>1.98</td>
<td>3.57</td>
<td>≥1.1 GHz</td>
<td>#</td>
<td>880</td>
</tr>
<tr>
<td>AX25MP 64-bit Multicore, Linux SMP</td>
<td>5</td>
<td>2.14</td>
<td>3.55</td>
<td>≥1.1 GHz</td>
<td>#</td>
<td>1076</td>
</tr>
<tr>
<td>A27 32-bit with MemBoost, Linux</td>
<td>5</td>
<td>1.98</td>
<td>3.57</td>
<td>≥1.1 GHz</td>
<td>21</td>
<td>223</td>
</tr>
<tr>
<td>AX27 64-bit with MemBoost, Linux</td>
<td>5</td>
<td>2.14</td>
<td>3.55</td>
<td>≥1.1 GHz</td>
<td>23</td>
<td>273</td>
</tr>
<tr>
<td>AX27L2 32-bit with MemBoost/L2, Linux</td>
<td>5</td>
<td>1.98</td>
<td>3.57</td>
<td>≥1.1 GHz</td>
<td>27</td>
<td>427</td>
</tr>
<tr>
<td>AX27L2 64-bit with MemBoost/L2, Linux</td>
<td>5</td>
<td>2.14</td>
<td>3.55</td>
<td>≥1.1 GHz</td>
<td>30</td>
<td>477</td>
</tr>
<tr>
<td>NX27V 64-bit with Vector Extension</td>
<td>5</td>
<td>2.14</td>
<td>3.55</td>
<td>≥1.2 GHz</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>N45 32-bit Superscalar</td>
<td>8</td>
<td>2.86</td>
<td>5.67</td>
<td>≥1.6 GHz</td>
<td>12.1</td>
<td>275</td>
</tr>
<tr>
<td>NX45 64-bit Superscalar</td>
<td>8</td>
<td>3.27</td>
<td>5.63</td>
<td>≥1.6 GHz</td>
<td>14.2</td>
<td>357</td>
</tr>
<tr>
<td>D45 32-bit Superscalar with DSP</td>
<td>8</td>
<td>2.86</td>
<td>5.67</td>
<td>≥1.6 GHz</td>
<td>12.1</td>
<td>337</td>
</tr>
<tr>
<td>A45 32-bit Superscalar Application Processor, Linux</td>
<td>8</td>
<td>2.86</td>
<td>5.67</td>
<td>≥1.6 GHz</td>
<td>13.5</td>
<td>412</td>
</tr>
<tr>
<td>AX45 64-bit Superscalar Application Processor, Linux</td>
<td>8</td>
<td>3.27</td>
<td>5.63</td>
<td>≥1.6 GHz</td>
<td>16.3</td>
<td>517</td>
</tr>
<tr>
<td>A45MP 32-bit Superscalar Application Processor, Linux</td>
<td>8</td>
<td>2.86</td>
<td>5.67</td>
<td>≥1.6 GHz</td>
<td>14.3</td>
<td>489</td>
</tr>
<tr>
<td>AX45MP 64-bit Superscalar Application Processor, Linux</td>
<td>8</td>
<td>3.27</td>
<td>5.63</td>
<td>≥1.6 GHz</td>
<td>16.8</td>
<td>632</td>
</tr>
</tbody>
</table>
AndeSight™
Software Developer’s Environment

General Description
AndeSight™ is an Eclipse-based integrated development environment (IDE) which provides an efficient way to develop embedded applications for AndesCore™ based SoCs.

Features
AndeSight™
- Eclipse-based IDE
- Project management
- Managed build system
- Feature-rich editor
- Source level debugger
- Profiling analysis
- In-System programming
- RTOS awareness debugging
- Break and display on exceptions
- Register Bitfield viewing and update
- Multicore development support
- Custom UI
- AndeStar™ V5 CPU support
- Extensive demo projects
- Flexible license control
- Corvette F1 (Arduino-Compatible board) support

Compilation Tools
- Compiler
- Assembler
- Linker

Library
- newlib
- glibc
- mculib

RTOS
- FreeRTOS
- Commercial

Debug/Analysis
- Debugger
- Profiler
- Code Coverage
- Code Size Analysis

Target Systems
- Real Evaluation Platform
- In Circuit Emulator (AICE)
- Virtual Evaluation Platform

AndeSight™ Versions:
STD
A comprehensive IDE with highly-optimized compilers, all GUI features, and Linux support.

RDS
Based on AndeSight™ with additional customization features for customers’ redistribution.

Toolchains
- Compiler for ELF and Linux targets
- Andes efficient ROM patch solution
- Highly optimized DSP library functions
- Highly optimized libc functions

Simulator
- CPU simulator(near-cycle accurate)
- Models of AndeShape™ SoC platform

ICE
- AICE debugger (4-wire/2-wire) with OpenOCD support

Supported Host Platforms
- Windows 7 / Windows 10
- Ubuntu Linux 18.04 / CentOS 7.0/
 Red Hat Linux 7.0
AndeStar™ Architecture

The AndeStar™ V5, the latest generation of Andes architecture, consists of both 32-bit and 64-bit register architectures with mixed-length 16/32-bit instructions. It adopts the RISC-V technology as its subset and benefits from the fast growing RISC-V ecosystem. Together with the merits of performance enhancement extensions inherited from V3, the third generation RISC-style architecture, the AndeStar™ V5 brings compact, modular and customizable advantages to SoC applications. As a founding Premier member of the RISC-V International Association, Andes is determined to take RISC-V to the mainstream.

AndeSoft™

Building Blocks for System - AndeSoft™ Software Components

With AndeSight™ IDE, users can develop software with hardware in a seamlessly integrated environment efficiently. To speed up the development process, Andes further provides a rich set of software components, from Real-Time Operating System, Linux kernel and drivers, libraries, and middleware, to application frameworks, running on AndesCore™ processors under the name AndeSoft™. Users can leverage those well-prepared and verified building blocks based on their needs and focus on tackling products to greatly improve time-to-market.

Fundamental

- Compiler and toolchain are contributed to and supported officially by GNU and LLVM communities
- Optimized C libraries: MCUlib, newlib and glibc
- Optimized low-level compute libraries for NN, DSP and vector processing: libnn, libdsp, libvec
- Concise linker script and its tools, Linker Scattering-and-Gathering (LdSaG)
- Bare-metal drivers and demo programs to demo AndesCore™ features
- Virtual platforms: AndeSim™ (near cycle-accurate), AndeSysC™ (SystemC library), Qemu

Real-Time Operating System

- Open source port on Andes: Zephyr, FreeRTOS
- Commercial port on Andes: Azure RTOS ThreadX, RT-Thread, SylixOS

Linux, Middleware and SW Framework

- Linux kernel since 4.17 and LTS v5.4, device drivers and advanced features: strace, ftrace, Perf, SMU, power throttling, suspend-to-RAM and kernel module
- U-Boot, OpenSBI and BBL
- Andes6: connect LPWAN to IPv6 seamlessly
The AndeShape™ development platform includes a variety of hardware entities, such as pre-platform IPs, ICE debuggers (AICE), and hardware evaluation boards for AndesCore™ processor-based system development. To satisfy the best quality-of-result (QoR) requirements for different system applications, various platform IPs are available with different bus and datapath structures. In addition to a basic set of connectivity and storage devices, the rich set of hardware options in both board and SoC levels enable versatile flexibility in hardware/software co-development and early prototyping.

The comprehensive debugging support, including in-system programming, self-diagnosis, and embedded ICE, greatly reduces the system development cycle while maintaining the quality of design.
About Andes Technology

Andes Technology, a Founding Premier member of RISC-V International and publicly listed CPU IP provider (TWSE: 6533; SIN: US03420C2089; ISIN: US03420C1099), has been devoting to the development of innovative high-performance/low-power 32/64-bit processors and associated SoC platforms since its foundation in 2005. Its powerful CPU lineup covering entry-level, mid-range, high-end, extensible and security families has achieved design wins in numerous embedded applications across the world, making a cumulative record of over 10 billion SoC shipment containing Andes IP as of 2021. Andes is the first mainstream CPU vendor adopting the open RISC-V. While delivering advanced features based on proprietary ISAs, Andes also provides customized CPU service. For more information about Andes’ products, technologies and services, please visit www.andestech.com or contact us through the following.

Headquarters
10F., No. 1, Sec. 3, Gongdao 5th Rd.,
East Dist., Hsinchu City,
Taiwan R.O.C 30069
Tel: +886-3-5726533
Fax: +886-3-5726535
Business: sales@andestech.com
Custom Computing: cbu_sales@andestech.com

Shanghai
Tel: +86-21-50310722
Mobile: +86-136-8186-2493
Room 303A, No. 500, Bibo Rd, Pudong District,
Shanghai, China
Business: sales.sh@andestech.com
technical: support.sh@andestech.com

USA
2860 Zanker RD, Suite 104,
San Jose CA 95134
Tel: 1-408-809-2929
Business: america@andestech.com
Technical: support.usa@andestech.com

Shenzhen
Mobile: +86-135-1031-3727
Business: sales.sz@andestech.com
Technical: support.sz@andestech.com

Korea
Business: sales.korea@andestech.com
Technical: support.korea@andestech.com

Beijing
Mobile: +86-135-1031-3727, +86-131-2120-6255
Business: sales.bj@andestech.com
Technical: support.bj@andestech.com

Japan
Business: sales.japan@andestech.com
Technical: support.japan@andestech.com

Europe
Business: europe@andestech.com
Technical: support.europe@andestech.com