RISC-V CON

ONLINE WEBINAR

Andes Infuses into Artificial Intelligence

High-Efficiency and High-Flexibility Processor IPs + NN SDK for AI

Simon Wang Technical Marketing Manager Andes Technology July 9, 2020

Agenda

The Diversity of AI Use-Cases
 Andes RISC-V Processors for AI
 Andes NN SDK for AI
 Summary

Andes at A Glance

Who We Are

Pure-play CPU **IP** Company

RISC-V Founding Premier Member

Taiwan Stock Exchange Listed

Major Open-Source Contributor/Maintainer

Running Task Groups Vice Chair of TSC Director of the Board **RISC-V** Ambassador

15 years old company 200^{+} Licensees Worldwide

accumulated Andesembedded SoC shipped 80% R&D employees

17K⁺ AndeSight IDE installation

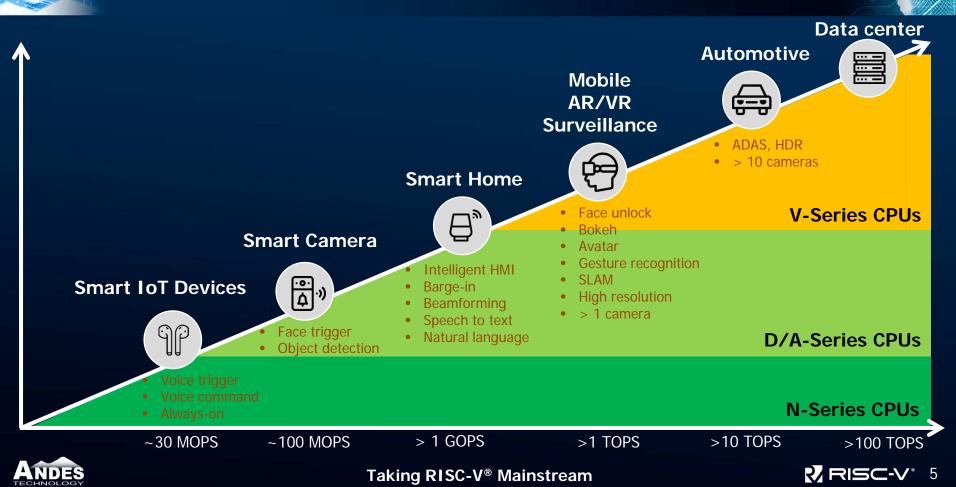
The Diversity of AI Use-Cases

Vision

- Image classification
- Object detection
- Image segmentation
- Spoof detection
- Face unlock
- Eye tracking
- Avatar
- SLAM

Voice and Speech

- Audio front-end processing
- Keyword spotting
- Voice command
- Speech to text
- Natural language processing
- Text to speech
- •



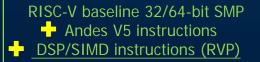
Any signal

- Sensor fusion with force, pressure, accelerometer, gyro, ampere meter, vibration, temperature, radar/lidar, sonar, ...
- Pattern recognition
- Predictive maintenance
- Healthcare

Andes Processors to Fit Your Al

Andes RISC-V Processors Family

N-Series Baseline


RISC-V baseline 32/64-bit SMP Andes V5 instructions (RV-EIMACFD-XV5)

- FPU, cache, local memory, ECC
 - 2-stage to 8-stage pipeline

Frequency up to 1.2GHz @28nm worse case

- ✓ Leading PPA and high efficiency CPU
- Control logic and simple data computation

MMU (A-Series)

SIMD width: 32, 64

Data types: INT8, INT16, INT32

 ✓ Efficient SIMD for data computation

 Compact MCU AI and basic edge AI applications

Taking RISC-V[®] Mainstream

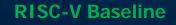
V-Series Vector

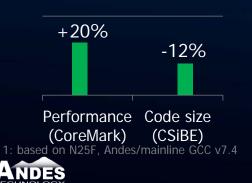
RISC-V baseline 64-bit Andes V5 instructions Vector instructions (RVV)

VLEN/SIMD width: 128, 256, 512

LMUL(Length Multiplier): 1, 2, 4, 8

Data types: INT4/8/16/32/64, BF16, FP16/32/64


- High performance, efficiency and configurability
- Enable data intensive computing from edge to cloud


RVP and RVV for Data Computation

RISC-V DSP/SIMD P-ext

- Clean state
- Compact
- Modular
- Andes V5 ISA extension

Speedup with Andes V5 ISA¹

- Andes contributed market-proven
 DSP/SIMD to RVP
- Use RV32 and RV64 XLEN-bit GPRs
- SIMD with 8b, 16b, 32b
- Complex DSP operating on 16/32/64-bit
- Saturation and rounding
- Min, max, shift, byte swap, bit reverse,
- pack, unpack, ...

RISC-V Vector V-ext

- Follow RVV latest standard
- >300 vector instructions
- Scalable vector registers
- 2x/4x data expansion arithmetic
- Load/store, integer, fixedpoint/floating-point operations

Speedup with RVV

Speedup with RVP

Typical Andes CPU Usages for AI from Edge to Cloud

Best-fitting control logic

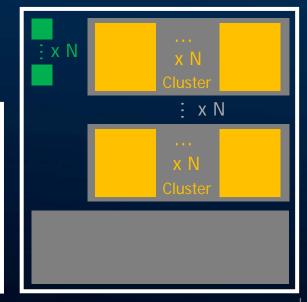
- RISC-V Compact and modular design
- Remove the components which not needed (e.g. FPU, multiplier)

Control logic

MCU edge AI

- Single MCU with small data computation (e.g. voice/face trigger)
 - Always-on, low power, and cost-sensitive devices (e.g. smart doorbell, ear pod)

Performance edge AI


Baseline + RVV

 Application SoC for large data process of CV/ML (e.g. AR/VR, surveillance)

x n

Cloud AI

 Heterogeneous and cluster computing for AI data center

Baseline Baseline + RVP e.g. Accelerator Connectivity ...
Baseline + RVP e.g. Connectivity

٠

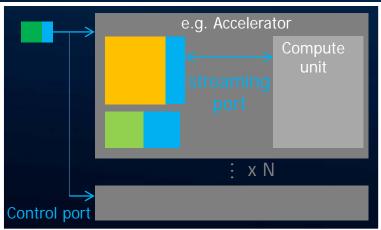
Data computation

Efficiency Boost with Andes Custom Extension™

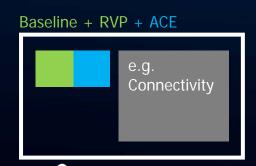
Compute kernel functions

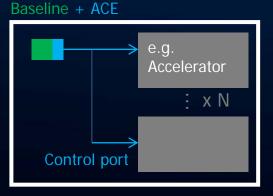
- Extend instructions for kernel functions (e.g. CONV, GEMM)
- Typical case: implement few dedicated kernel functions which consumes heavy computing power
- Could fit in low power and cost-sensitive devices

Control ports

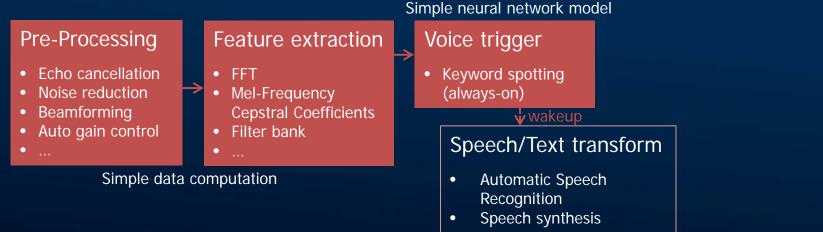

- Extend instructions to control ports (e.g. send command, ack, wait-for-result)
- Typical case: a very compact CPU as a powerful accelerator controller which can send 90bit commands in one cycle

Streaming ports

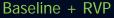

+ compute kernel functions + control ports

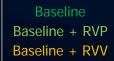

- Extend instructions for high volume information transferring between vector processors and external compute units
- Typical case: increase data bandwidth and shorten data latency when using vector to offload hard-wired AI compute unit (e.g. sigmoid)

Baseline + RVV

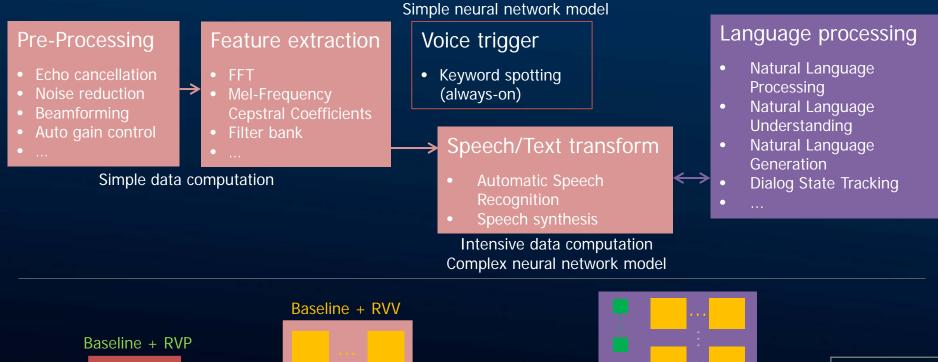


R/ RISC




Voice-Based Human Machine Interface Use Case

Intensive data computation Complex neural network model

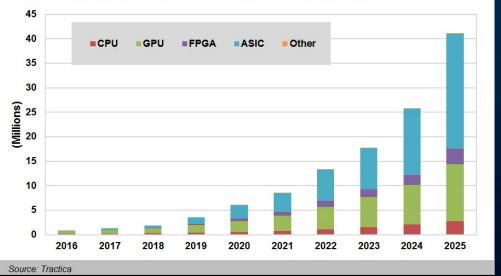


ANDE

Taking RISC-V[®] Mainstream

RISC-V 10

Voice-Based Human Machine Interface Use Case



Deep Learning Chipset Global Market

🔿 Tractica

Deep Learning Chipset Unit Shipments by Type, World Markets: 2016-2025

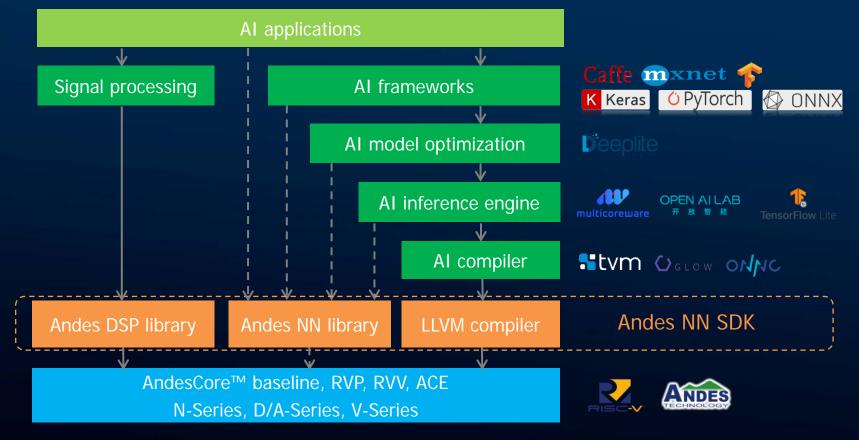
- Deep learning chipset market growing at 42.2% CAGR from 2016 to 2025
 - Largest growth coming from ASIC including:

RISC-V

• CPU

- DSP
- VPU (Vector processing unit)
- Hard-wired engine

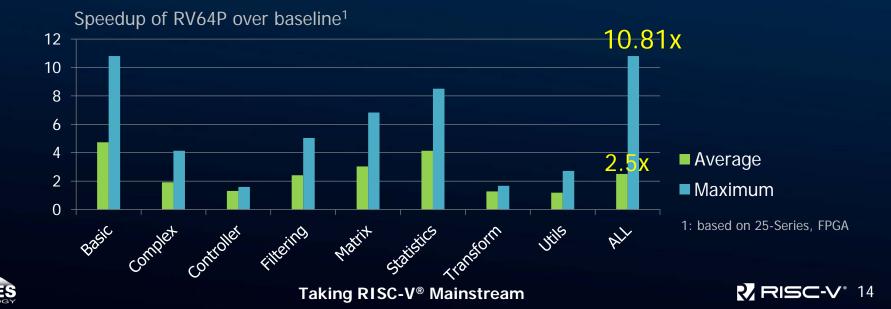
. .


Tratica, March, 2017

https://tractica.omdia.com/newsroom/press-releases/deep-learning-chipset-shipments-to-reach-41-2-million-units-annually-by-2025/

Andes NN SDK

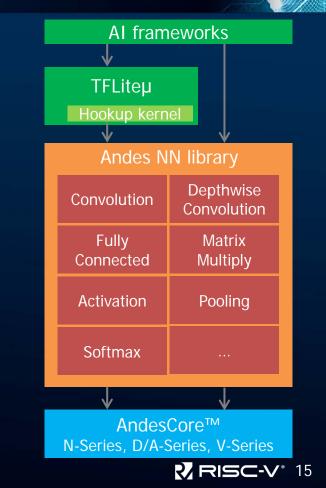
Full ecosystem of AI software frameworks, compilers and libraries


Taking RISC-V[®] Mainstream

RISC-V° 13

Andes DSP Library

- Optimized low-level DSP functions for RISC-V baseline and RVP processors
- Boost signal processing performance
- >200 functions in 8 categories
- CMSIS-DSP like APIs

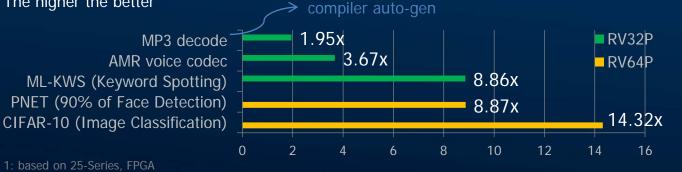

Andes NN Library and TensorFlow Lite Micro

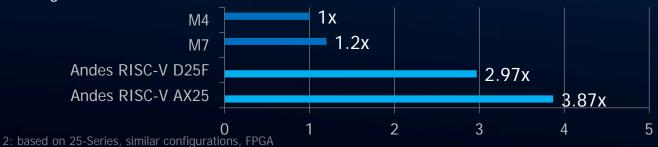
Andes NN library

- An optimized low-level NN functions for RISC-V baseline, RVP and RVV processors
- Boost NN performance by using SIMD and vector instructions
- CMSIS-NN like API

TensorFlow Lite for Microcontroller (TFLiteµ)

- Create bare-metal binary with offline flow
- Major kernel functions hooked up with Andes NN library




RVP DSP/SIMD Processors Speedup

Speedup of RVP over baseline¹

The higher the better

CIFAR-10 image classification speedup² The higher the better

- Performance boost with Andes NN/DSP libraries
- Increase power efficiency \checkmark

RISC-V^{*} 16

Higher response time

RVV Vector Processors Speedup over Baseline

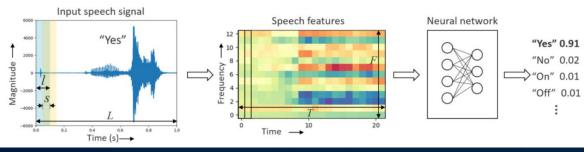
Note

- Compared to pure C scalar code compiled with high optimization
- Both vector and scalar code ran on the NX27V FPGA with 512-bit VLEN, 256-bit bus

Taking RISC-V[®] Mainstream

RISC-V

Andes KWS Solution


https://arxiv.org/pdf/1711.07128.pdf

Voice trigger

- To wakeup the system
- Consume lower power than ASR for always-on usage
- Reduce false alarms

Voice command

- Hands-free solutions
- Simple and offline HMI

Voice Input

Feature Extraction

Please press any button to start calibrating Silence sound ... cal=20461610, threshold=44003

Commands: yes, no, up, down, Please press any button and) now .			
Silence Unknown yes no	up	down	left	right	on	off	stop	go
0 0 127 0	0	0	0	0	0	0	0	0
Detected yes (99%) 0000 000 .000000000 '888' d88' '88b d88('88.8' 888000888 'Y88b '888' 888 .0 0.)8 .8' 'Y8bod8P' 8""888 .0P' 'Y8P'	"8 8b			ADP-X0	с7К			

Taking RISC-V[®] Mainstream

RISC-V* 18

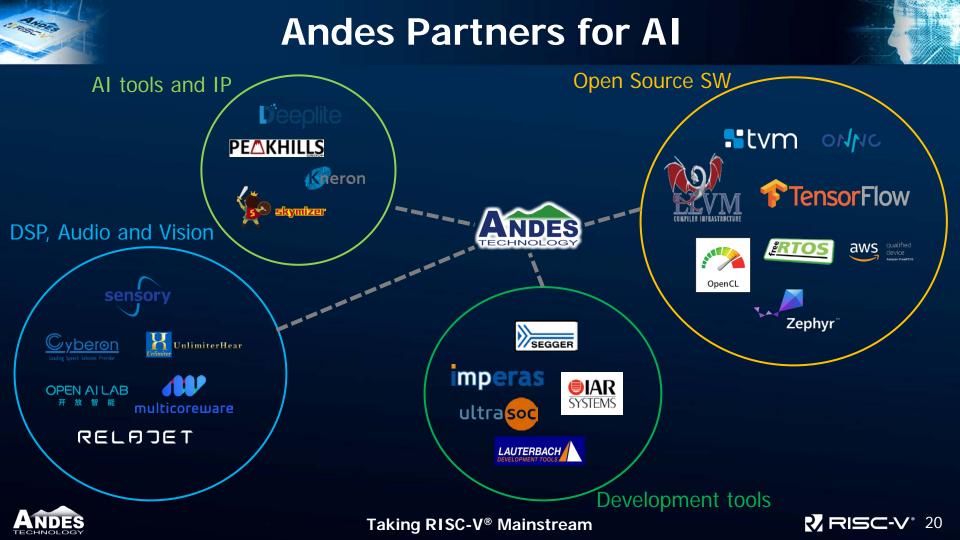
Andes KWS Solution

KWS software stack

Andes NN/DSP library accelerated by Andes RISC-V DSP/SIMD P-ext

KWS application

- Feature extraction: MFCC
- AI model: DNN, DS-CNN, GRU


KWS tools

- KWS TensorFlow training script
- KWS quantization tool
- KWS model code-gen to .c/.h

Model	DS-CNN	DNN	GRU
Accuracy	94.4%	84.6%	93.5%
Storage size (code+rodata+data)	186 KB	243 KB	243 KB
SRAM size (data+bss)	35 KB	35 KB	36 KB
Cycles ¹	3,498,638	179,136	5,055,417
1: collected only from or	ne inference sar	mple of WAV	file on D25F FP

R/ RISC

Summary

Andes RISC-V processors support the diversity of AI use-cases

- Baseline: compact and modular control logic
- Baseline + RVP: efficient DSP/SIMD for simple data computation
- Baseline + RVV: high performance, efficiency and configurability to enable data intensive computing from edge to cloud
- Andes NN SDK targets to boost your SoC AI performance, achieve outstanding hardware utilization and most importantly, improve timeto-market
 - Andes DSP library for signal processing
 - Andes NN library for NN operators

Ecosystem further advances your AI project developments

RISC-V CON

ANDE

ONLINE WEBINAR

Thank you, See you next webinar!