

Simon TC Wang Technical Marketing Manager Andes Technology April 26, 2021

- AndeSight™ IDE
- AndeSoft[™] BSP
- AI Software Stack
 - DSP and Vector programming
 - NN library and real NN model use cases

Andes at A Glance

Who We Are

Pure-play **CPU IP Company**

RISC-V Founding Premier Member

Taiwan Stock **Exchange Listed**

Major Open-Source Contributor/Maintainer

Director of the Board Vice Chair of TSC **Running Task Groups RISC-V Ambassador**

years old company 80% R&D employees

7B⁺(By end of 2020) accumulated Andesembedded SoC shipped

200⁺ Licensees Worldwide 20K+ AndeSight IDE installation

Taking RISC-V® Mainstream

AndeSight™ IDE

Comprehensive Development Environment

AndeSight™ IDE for RISC-V

Accelerate your RISC-V software developments with the comprehensive development environment!

AndeSight™ IDE

with AndeSoft™ BSP inside

- User-friendly and easy-to-use IDE
- Highly-optimized GCC/LLVM toolchains for outstanding performance and compact memory footprint
- Abundant demos for boosting your development
- Rich RTOSes and Linux (LTP verified)
- Optimized compute library: DSP, Vector¹
- Peripheral drivers for AndeShape™ platform
- Near cycle-accurate simulators: AndeSim™
- Arduino support for Andes Corvette EVB

SoC SW Development Environment

The state of the s

AndeSight™: Professional IDE

■ Eclipse-based IDE, enriched from 16-year continuous development

Bit-filed display

Function profiling

Meta linker script editor

RTOS awareness

1919 NTPT

Custom plugin

Function code size

FreeRTOS Timeline Analyzer

■ Visualize the runtime execution behaviors of task, interrupts and events within a period of time¹

1: EVB target only

Multicore Development Support

 Build and debug the multicore software with separate configurations by simply creating multicore projects

Core Grouping

- **Grouping Cores for Efficient Debugging**
 - Debug commands can be sent to a specific set of cores at the same time.

AndeSight™ Scripting

- **Record and replay UI operations with Python script**
 - Test automation
 - Issue reproduction

Search Navigate Project Run Window Help ☆ Debug

□ P X B demo_nn_conv_HWC_ < < terminated > demo_nn_relu_q7 Default [Application Program] ✓

✓ demo_nn_relu_q7 demo_nn_relu_q7 Default<terminated, exit value: 0>gdb(8.2.50.2) Build Targets > Binaries > m Includes > 🗁 bin > > Default Script Shell ⋈ script testing. demo nn relu q7.le project.select('sc') Start to record U run.py project.select('demo nn relu q7') run.py.log run('demo nn relu q7 Default') operations > 15 demo v f32 add run.select('demo nn relu q7 Default') run.select('demo nn relu q7 Default') rvv-intrinsics-examples run.config('run.py').create('Script') run('run.py') run('demo nn relu q7 Default') run.select('demo nn relu q7 Default')

Python script

AndeSoft™ BSP

Application Building Blocks Inside of AndeSight™ IDE

AndeSoft™ BSP: Application Building Blocks

Fundamental

- Compiler/Toolchain are contributed to and supported officially by **GNU/LLVM** communities
- Optimized **MCUlib**, newlib and glibc
- Optimized low-level compute libraries for NN, DSP and vector processing: **libnn**, **libdsp**, **libvec**
- Fast and near cycle-accurate simulators: AndeSim[™], AndeSysC[™], Qemu¹
- Debugging: GDB and ICEman (speed-optimized OpenOCD)
- Concise linker script and its tools, Linker Scattering-and-Gathering (LdSaG)
- Bare-metal drivers and demo programs to demo AndesCore™ features

Real-Time Operating Systems

Linux, Middleware and SW Framework

- Linux kernel v4.17 and LTS v5.4, device drivers and advanced features: strace, ftrace, Perf, SMU, power throttling, suspend to RAM, HIGHMEM and kernel module
- U-Boot, OpenSBI and BBL

AndeSoftTM: Bare Metal

■ Rich startup demo projects for Andes-specific features

Categories	Startup demo
Interrupt	PLIC, CLIC
Memory	MMU, PMP, PMA, cache, cache lock, ECC, bus matrix slave port
Power Management	PowerBrake, hibernate, WFI CPU standby/resume
Programming	DSP, printf UART redirect, C++ programming
Misc	StackSafe™, performance monitor, SMP

- AMSI (Andes MCU Software Interface) driver APIs
 - DMA, Flash, GPIO, I2C, PWM, RTC, SPI, UART and WDT

AndeSoftTM: Linux

■ Linux kernel

- Mainline Linux compatible
- V4.17 and LTS v5.4, RV[32|64]GC, SMP
- Cache coherence and non-coherence support
- Linux Test Projects (LTP) verified
- Device drivers for AndeShape™ AE350 platform

■ Kernel features

- strace/ftrace to debug Linux applications easily
- Perf to evaluate the system bottleneck
- Power Management
 - Suspend-to-RAM: suspended by sysfs and wakeup by RTC and UART interrupt
 - PowerBrake: power throttling controlled by sysfs
- **Kernel module** all RV32/RV64 relocation type
- HIGHMEM support >1GB memory for RV32
- CPU hotplug

■ U-Boot, U-Boot-spl, OpenSBI and BBL

AndeSoftTM: Linux

Linux Distribution and Build System*

*: available upon request

- **Andes GitLab Service for Linux Development Packages**
 - A public web service: git.andestech.com
 - Under Andes Maintenance Program

AI Software Stack

DSP, Vector and NN Programming

AI Software Stack and Ecosystem

First implementation of RISC-V DSP/SIMD extension (RVP)

- DSP intrinsic functions: as C-like functions without writing error-prone assembly
- AndeSoft™ DSP library: ~300 functions in 10 categories
 - ➤ Basic, complex, controller, distance, filtering, matrix, statistic, SVM, transform, utils
- Increase power efficiency to your DSP applications: 2.0x-5.6x speedup for codecs, and 8.9x-14.5x speedup for NN models

AndeSoft™ DSP Library

- Optimized low-level DSP functions for RISC-V Baseline and RVP processors
- Compatible with CMSIS-DSP API
- Compiler automatically generates partial RVP instructions to facilitate development
- Boost signal processing performance
- Speedup 2.9x in average and 21.9x in maximum

RISC-V Vector Software Solutions

■ Standard software solutions in AndeSight™ IDE

- AndeSim™: new cycle-accurate simulator
- Toolchains: intrinsic functions, as C-like functions without writing error-prone assembly
- AndeSoft™ Vector library:
 - Optimized for RISC-V baseline and RVV processors
 - > 100 functions in 5 categories: basic, filtering, image, matrix, and transform
 - Compatible with NE10 library APIs

■ Advanced software solutions

- AndeSysC™: SystemC support for AndeSim™
- AndesClarity™: GUI-based processor pipeline visualizer and analyzer
- AndeSoft™ NN library: optimized neural network functions

Anors -

AndesClarity™ Processor Pipeline Analyzer

AndeSoft™ NN Library

- Optimized neural network functions for Pure-C, RVP, and RVV processors
- Boost NN performance by using SIMD and vector instructions
- >120 functions in 8 categories
- Compatible with CMSIS-NN APIs

Inference Flow with TensorFlow Lite Micro

Categories	Operators	NN Library API ¹		
	Sigmoid Tanh	riscv_nn_activate_[q7 q15]		
		riscv_nn_relu_[q7 q15] riscv_nn_leaky_relu_q7		
Basic	FIRMENT-WISE	riscv_nn_ew_add_s8 riscv_nn_ew_mul_s8		
Concatenation	Concatenation	riscv_nn_concate_s8_[w x y z]		
Convolution	Pointwise convolution	riscv_nn_conv_HWC_[q7 u8 s8 q15] riscv_nn_conv_1x1_HWC_[q7 u8 s8] riscv_nn_conv_dw_HWC_[q7 u8 s8]		
Fully-connected	Fully-connected	riscv_nn_fc_[q7 u8 s8 q15]		
PAAIINA		riscv_nn_maxpool_[q7 s8]_HWC riscv_nn_avepool_[q7 s8]_HWC		
Softmax	Softmax	riscv_nn_softmax_[q7 u8 s8 q15]		
Utils	Reshape	riscv_nn_reshape_s8		

1: including but not limited to the list

Use Case: CIFAR-10 NN Model

CIFAR-10	Operators	NN Library APIs
llaver i		riscv_nn_conv_HWC_q7_RGB_fast riscv_nn_relu_q7
	Pooling (maxpool)	riscv_nn_maxpool_q7_HWC
II 2V/Or /		riscv_nn_conv_HWC_q7_fast riscv_nn_relu_q7
	Pooling (maxpool)	riscv_nn_maxpool_q7_HWC
llaver 3	Convolution Activation (ReLU)	riscv_nn_conv_HWC_q7_fast riscv_nn_relu_q7
	Pooling (maxpool)	riscv_nn_maxpool_q7_HWC
layer 4	Fully-connected	riscv_nn_fc_q7_fast
layer 5	Softmax	riscv_nn_softmax_q7

- ✓ Performance boost with AndeSoft™ NN library
- Increase power efficiency
- ✓ Lower response time

1: based on 25-Series, FPGA

Use Case: MobileNet-v1 NN Model

Inference latency of MobileNet-v1 NN model for object detection

The lower the better

MobileNet-v1	Data	ISA	VLEN	SIMD	Real chip latency	Nomalized latency ³
MODITEMET-VI	Туре	ISA	(bit)	(bit)	(ms)	(ms @1GHz, 1 core)
CA9 (Xilinx PYNQ) ¹		NEON		128	721.4 @650MHz, 2 cores	703.4
CA53 (Raspberry Pi-3B) ¹	FP32	NEON		128	121.8 @1.2GHz, 4 cores	438.5
CA72 (Firefly RK3399) ¹	rr32	NEON		128	77.9 @1.8Hz, 2 cores	210.3
CA73 (Kirin 970) ¹		NEON		128	41.3 @2.36GHz, 4 cores	292.4
Andes NX27V ²	FP16	RVV	512	256		62.3
Andes A27L2 ²		RVP		32		564.5
Andes AX27L2 ²	INT8	RVP		64		358.5

1: TVM	, https://git	thub.com/ar	ache/tvm/v	wiki/Benchmark	#arm-cpu
--------	---------------	-------------	------------	----------------	----------

^{2:} AndeSoft™ NN Library, PyTorchCV imagenet-1k "MobileNet x1.0", https://pypi.org/project/pytorchcv/ preliminary data based on FPGA and scaling to 1.0 GHz. Real SoC performance will depend on memory subsystem

Type / Stride	1. MobileNet Body Archi Filter Shape	Input Size
Conv/s2	$3 \times 3 \times 3 \times 32$	$224 \times 224 \times 3$
Conv dw / s1	$3 \times 3 \times 32 \text{ dw}$	$112 \times 112 \times 32$
Conv/s1	$1 \times 1 \times 32 \times 64$	$112 \times 112 \times 32$
Conv dw / s2	$3 \times 3 \times 64 \mathrm{dw}$	$112 \times 112 \times 64$
Conv/s1	$1 \times 1 \times 64 \times 128$	$56 \times 56 \times 64$
Conv dw / s1	$3 \times 3 \times 128 \mathrm{dw}$	$56 \times 56 \times 128$
Conv/s1	$1 \times 1 \times 128 \times 128$	$56 \times 56 \times 128$
Conv dw / s2	$3 \times 3 \times 128 \mathrm{dw}$	$56 \times 56 \times 128$
Conv/s1	$1 \times 1 \times 128 \times 256$	$28 \times 28 \times 128$
Conv dw / s1	$3 \times 3 \times 256 \mathrm{dw}$	$28 \times 28 \times 256$
Conv/s1	$1 \times 1 \times 256 \times 256$	$28 \times 28 \times 256$
Conv dw / s2	$3 \times 3 \times 256 \mathrm{dw}$	$28 \times 28 \times 256$
Conv/s1	$1 \times 1 \times 256 \times 512$	$14 \times 14 \times 256$
5× Conv dw/s1	$3 \times 3 \times 512 \mathrm{dw}$	$14 \times 14 \times 512$
Conv/s1	$1 \times 1 \times 512 \times 512$	$14 \times 14 \times 512$
Conv dw / s2	$3 \times 3 \times 512 \mathrm{dw}$	$14 \times 14 \times 512$
Conv/s1	$1 \times 1 \times 512 \times 1024$	$7 \times 7 \times 512$
Conv dw / s2	$3 \times 3 \times 1024 \text{ dw}$	$7 \times 7 \times 1024$
Conv/s1	$1 \times 1 \times 1024 \times 1024$	$7 \times 7 \times 1024$
Avg Pool/s1	Pool 7 × 7	$7 \times 7 \times 1024$
FC/s1	1024×1000	$1 \times 1 \times 1024$
Softmax / s1	Classifier	$1 \times 1 \times 1000$

T-1-1-	2	D	D	T		The	_
able	L	Resource	Per	Lav	/er	IV	

Туре	Mult-Adds	Parameters
Conv 1 × 1	94.86%	74.59%
Conv DW 3 × 3	3.06%	1.06%
Conv 3 × 3	1.19%	0.02%
Fully Connected	0.18%	24.33% 知乎

^{3:} Scale to the same frequency; estimated performance 4 cores="3"*1 core, the magic number "3" is from experience

Andes Ecosystem

Andes Partners and Ecosystem

- Complete build and debug toolchain for RISC-V
- Support all series of Andes RISC-V CPU¹
- Functional Safety Certified
 - IEC 61508
 - ISO 26262
 - EN 50128
 - IEC 62304

Toolchain
Compiler
C-STAT
Functional
Safety

- 1: AndesCore[™] 45-Series will be available in the mid-year of 2021
- 2: Part of Andes V5 RISC-V extensions are supported in the mid-year of 2021

AWS Device Qualification Program for FreeRTOS

- AndeShape[™] Corvette-F1 N25 now is an AWS FreeRTOS-qualified evaluation platform
- The FreeRTOS port is verified and executes smoothly and consistently with AWS IoT
 - FreeRTOS kernel, Wi-Fi management, TCP/IP stack, PKCS#11¹, TLS², MQTT³

^{2:} Transport Layer Security

^{3:} Message Queue Telemetry Transport

Summary

■ AndeSight[™] IDE

- User-friendly and easy-to-use IDE
- Accelerate your RISC-V software developments with the comprehensive development environment

■ AndeSoft[™] BSP

- Highly-optimized toolchains for better performance and smaller memory footprint
- Well-integrated building blocks to reduce time-to-market

■ AI Software Stack

 Boost the performance for RISC-V AI and IoT applications with optimized AndeSoft™ DSP, Vector and NN libraries

AndeSight™ IDE Free Download

- Previous version for evaluation
- **■** Three-month time limit

