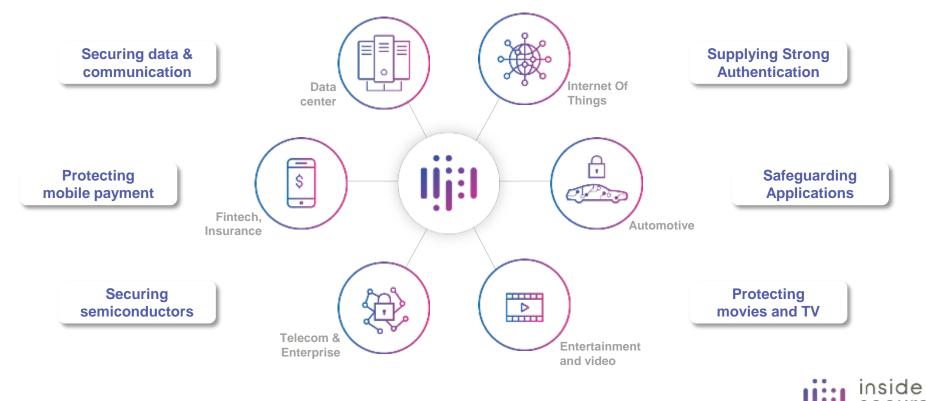


IoT: Internet of Threats? Protect the Things!

IoT Security principles and its reflection on Automotive Security


Inside Secure

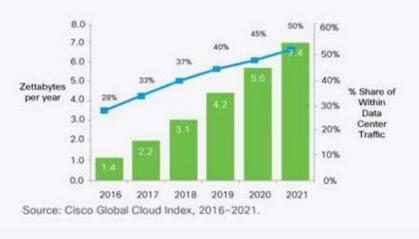
George Kuan

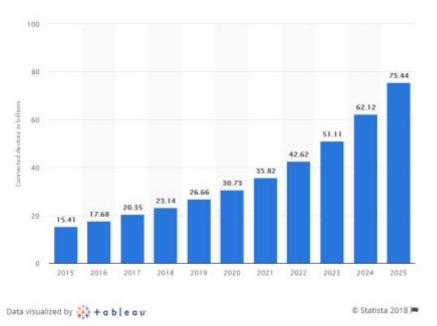
www.insidesecure.com

Inside Secure is uniquely positioned to help grow business safely in high potential markets

Trusted by the world's top companies

With a worldwide team of security experts

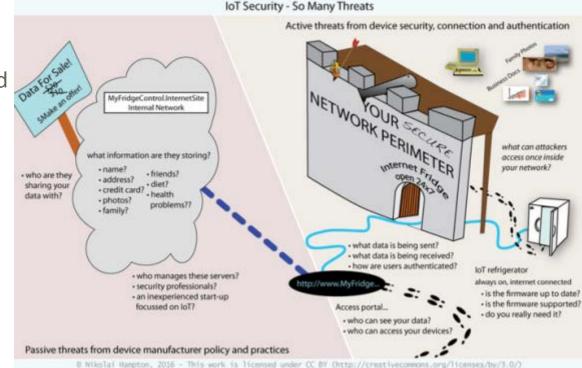

inside secure


2019-05-09– George Kuan -- Inside Secure

4

Continued growth of connected devices and cloud services

- Internet of Things overtook
 # mobile phones in 2018
- Data center capacity doubles every 3-4yrs
- Edge devices must find right balance between local computation, power consumption & storage and security capabilities.



Why IoT Security?

- IoT devices are typically connected in the trusted network
- IoT devices make connection to the cloud
- IoT devices collect private data
- For service providers
- Trust the users of your service
- Understand/Know the source of the stored data

 For device manufactures: What if your devices are being used in internet attacks (DDOS, privacy violation, ransomware, ...)

Challenge #1: many different verticals

- Video / gaming / VR
- Toys
- wearables

Smart home

- Access control
- Surveillance and physical security
- Energy management
- Maintenance
- Appliance

Smart City

- Parking meters
- Traffic control
- Waste management
- Public safety
- Lighting

<u>Retail</u>

- Inventory management
- Smart payments
- Smart displays
- Shoppers tracking

- Robotic control
- Production monitoring
- Process control
- Maintenance

- <u>Health</u>
- Medication management
- Health monitoring
- Remote diagnostic
- Maintenance

Transportation

- Vehicle diagnostics
- Autonomous driving car
- Fleet management

Environment

- Air/water quality
- Noise
- Radiation
- flooding

<u>Agriculture</u>

- Corp yield monitoring
- Soil monitoring
- Irrigation control

Challenge #2: Different devices, different constraints, different needs

Low volume;

high margins

Resource constrained

Resource

Challenges: #3: Connectivity interoperability

E Zigbee

Consumer

Mission critical application #4: Fragmented device architecture
#5: Fragmented cloud architecture
#6: Huge supplier/device
manufacturer base
#7: lack of standardization

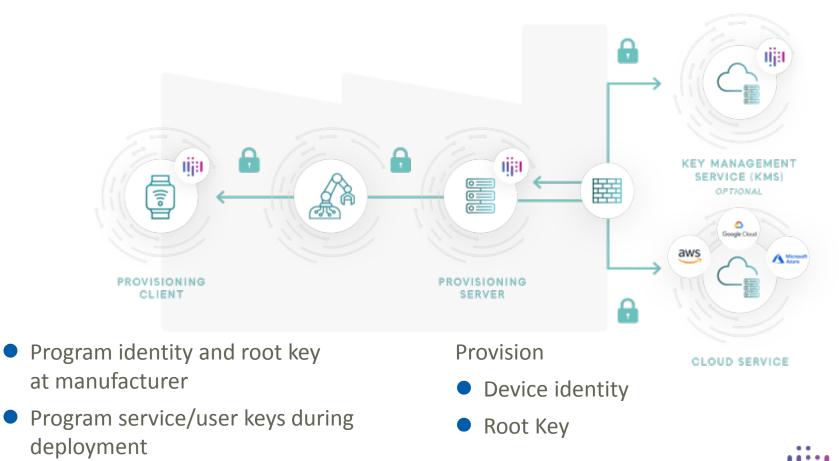
Still there are generic Security Requirements applicable for IoT, including automotive Automotive and IoT Security Essentials

- ➤ Keep it Simple
- Secure Boot
- Identity protection
- Device security
- > Authentication
- Secure connection
- Data security
- Secure updates

- Single step integration in the system architecture
- Prevent execution of unauthorized software
- Shield the ID from external software
- Protecting device assets, data and services
- Have a trusted identity to protect the service!
- TLS support, required by cloud services
- Encrypt data stored / created / accessed
- Secure updates and recovery; incl. attestation (measured boot)

Why Simple

- Security knowledge is limited
 - Mistakes in deployment
 - Prevent enablement
- Implementation is difficult
 - > Use complete solutions
 - Use standard integrations


What is the Biggest Frustration you have with the Internet of Things?

IoT Frustration Survey from IoTsudit TM

inside secure

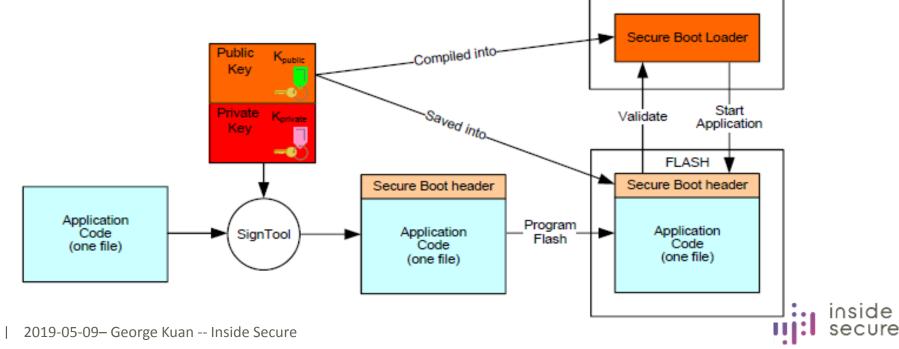
#1: Provisioning -- create a trusted Identity

inside

11 | 2019-05-09– George Kuan -- Inside Secure

#2: Protect the identity of devices, such as sensors

- ID cloning gives unauthorized access to:
 - Services
 - > Data
- A Root-of-Trust prevents:
 - Usage of fake parts: Liability
 - Misuse and Disruption of the service
 - Misuse of proprietary or personal data stored in the cloud



#3: Secure Boot

- Boot the device from an immutable source like a ROM
- Use a immutable (internally stored) public key to validate the downloaded SW image
 - Typically the hash of this key is stored in OTP or ROM
- Use a protected/unique image decryption key

13

ROM

Automotive Security (cybersecurity) specs (1)

EVITA: Design, verify, and prototype an architecture for automotive on-board networks where security-relevant components are protected against tampering and sensitive data are protected against compromise when transferred inside a vehicle

- Full : Target is V2X Communications
 SW Crypto: ECDSA, ECDH, MAC/HMAC
 HW Crypto: ECC, AES, Whirlpool, TRNG
 Programmable CPU
- Medium : Target is on-board communications SW Crypto: ECDSA, ECDH, MAC/HMAC HW Crypto: AES, TRNG Programmable CPU
- Light : Target is on-board communications SW Crypto: AES, MAC HW Crypto: AES, PRNG (external seed) No programmable CPU

inside secure

14 | 2019-05-09- George Kuan -- Inside Secure

Automotive Security (cybersecurity) specs (2)

Secure Hardware Extension (SHE)

- Protect cryptographic keys from software attacks
- Provide an authentic software environment
- Security depend on the strength of the underlying algorithm and the confidentiality of the keys
- Allow for distributed key ownerships
- Keep the flexibility high and the costs low
- Hardware AES 128 (with CMAC)
- ✤ AES & MAC crypto functions
- Secure Boot (and associated OTP)

Hardware Security Module (HSM)

PRESERVE

- Vehicle security architecture
- Operates with an HSM / VaultIP model
- Focus on typical security analysis
- Risk assessment, Threat analysis, Policies etc, etc
- 15 | 2019-05-09– George Kuan -- Inside Secure

Safety vs. Security

- **Safety** is the ability to manage risk and responses on malfunction
- **Security** is degree of resistance to attacks resulting in intentional failures

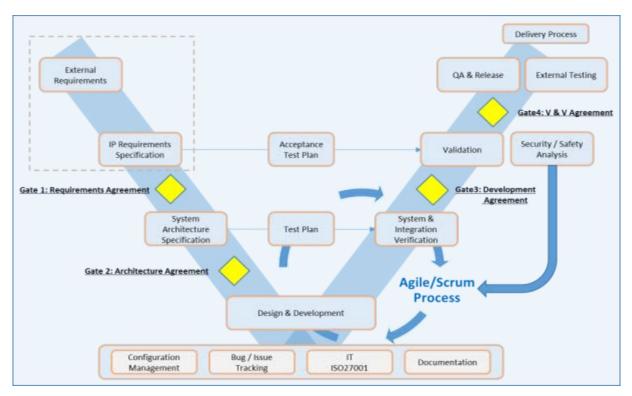
Several commonly used and referenced standards

- ISO26262 is a safety standard for automotive
- ISO19790 is a security requirement standard
- FIPS 140-2 is a security standardization
- ISO IEC62443 defines industrial processes that are also related to safety;
 62443-4 is fully focused on security

• Fault detection for safety is not the same as fault injection detection

ISO26262

- Defines development process
- Defines 4 different safety levels ASIL A...D
- Defines a requirement for an FMEDA
 - > Failure Modes, Effects, and Diagnostic Analysis
- Dependent on the safety level, fault detection and fault management is required
- Requires certification by a lab

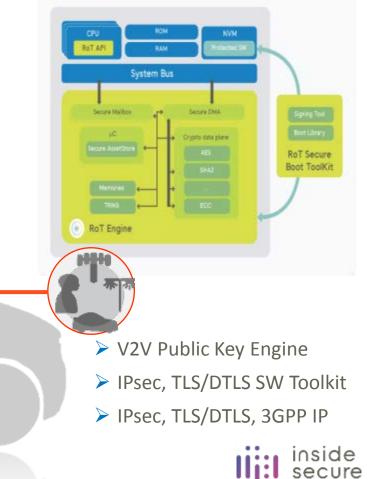

What brings ISO26262 to Security (IPs)

Process

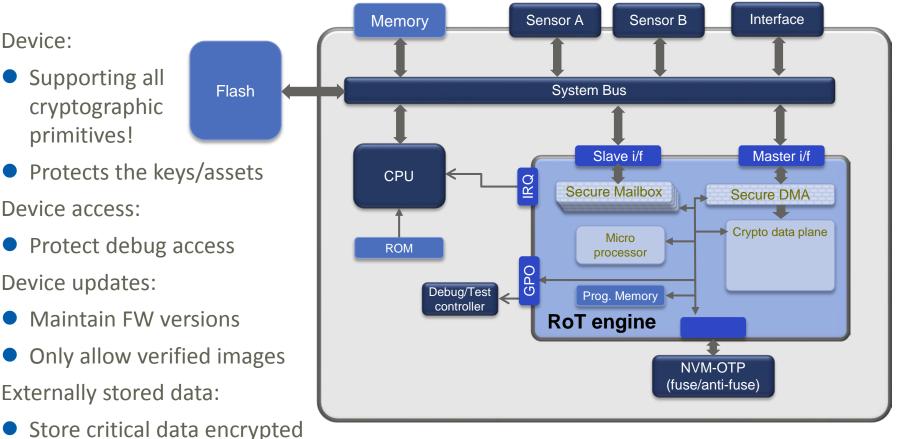
- Development process
- FMEDA
- Safety Manual

Design

- Redundancy
- Fault detection logic
- Fault management

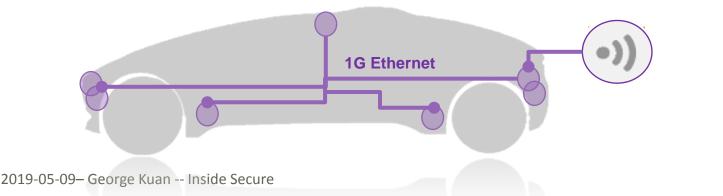

Solution for ECU and V2X: Flexible Security Module

• Embedded HSM


- > IP Cores for Evita Light, Medium, Full
- Secure Boot Image Encryption
 - Secure boot library
 - Software cryptography
 - Multi-stage boot support
 - Secure CAN and Ethernet

➤ MACsec IEEE Std 802.1AE[™] Standard support

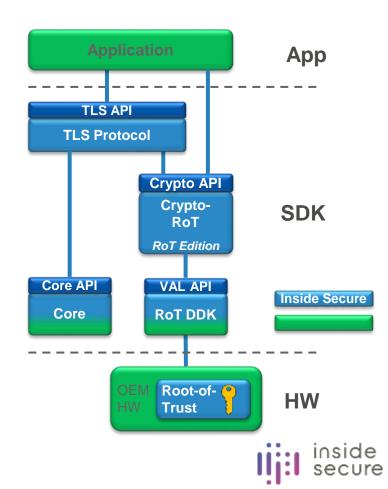
#4: Chose a flexible hardware based security solution



Don't forget to protect the network

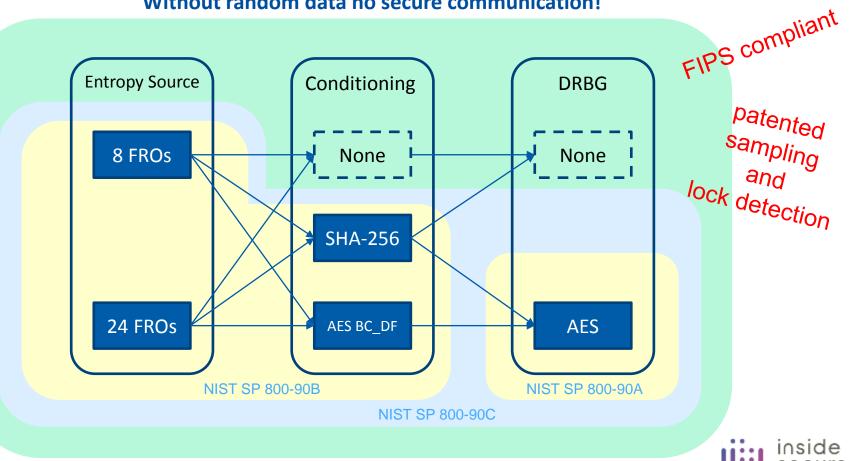
- Data is generated, and must be available instantaneously
- Ethernet Infrastructure, but also LIDAR-sensor networks in a car require high-speed low latency links
- MACsec is very scalable and matches these requirements
- Inside Secure offers:

21

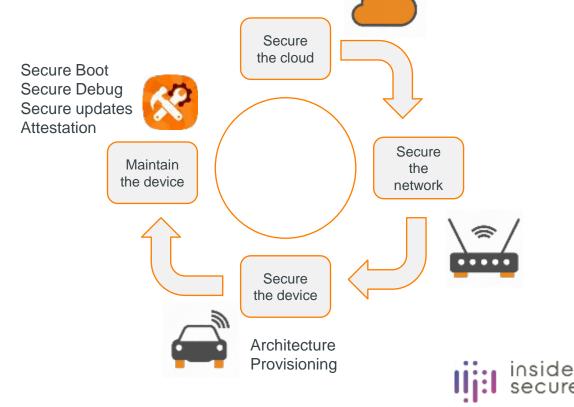

- High-speed TLS / IPsec / MACsec engines ranging from 1Gbps for industrial and automotive networks to 50Gbps for gateways supporting full range of algorithms
- MACsec / IPsec engines up to 400Gbps/800Gbps engines for data center security

#5 Secure Connection and Data transfer

- Establish a secure connection with the infrastructure
 - Require a provisioned device.
 - (Almost) All cloud services require TLS
- Root-of-Trust provides HW protection for the TLS Client/Server private key
- Root-of-Trust Edition offloads cryptographic operations to Root-of-Trust HW
- Client/server authentication
- Shared secret generation
- Pseudo-random number generation for client_random and server_random


#6 V2X communication - Public Key Acceleration IP

- ECC on all memories
- FIPS-140-2 compliant operations
 - Hardware zeroization logic for all memories containing sensitive data
 - Optional TRNG with SP800-90A (FIPS-140-2) compliant post processing using a separate AES-256 core and TRNG buffer RAM wiping
 - Capability to execute run-time the known-answer tests on local AES (if present), through firmware (high-level commands).
 - Capability to execute run-time the known-answer tests on the TRNG post-processor through direct access to the module registers.
- Optionally side channel attack counter measures available
- High Speed PKA engine with High Assurance Mode:
 - > An external input can control or block access to the master controller
- High Speed PKA engine with Debug Mode


#7: Random Source: True Random Number Generator (TRNG)

Without random data no secure communication!

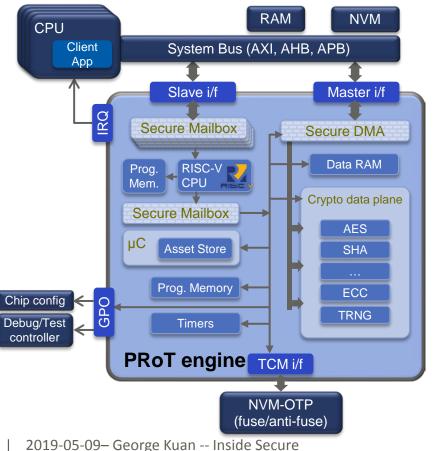
Was it simple?

Let us offload the complexity with mature solutions, comprehensive documentations, tests and support

25 | 2019-05-09- George Kuan -- Inside Secure

You are protected!

Inside Secure's Solutions for Automotive Market



inside

Check it out on https://www.insidesecure.com/Markets/Automotive

HSM: C-Programmable Root-of-Trust

A Programmable Vault in the SoC

27

- Embeds Root-of-Trust engine protecting the assets
- Can run high-level applications in secure environment
 - Includes Customer developed applications
- Provides user-authentication
- Inside Secure has a complete development platform with PRoT
- RISC-V external debug support (currently uses OpenOCD framework)